Мы готовы учитывать Ваши комментарии и размещать предложенные Вами термины и определения. Если Вы не смогли найти нужный Вам термин - напишите нам письмо, воспользовавшись удобной формой. Мы также гарантируем размещение отсутствующего здесь термина, присланного Вами.

Буква J! | JPEG (Joint Photographic Experts Group, JPG) определение.

JPEG (Joint Photographic Experts Group, JPG) определение.

1. Объединенная группа экспертов в области фотографии;

2. Разработанный данной группой метод сжатия изображений и соответствующий графический формат, часто используемый в WWW. Характерен компактностью файлов и, соответственно, быстрой передачей, а также "потерей" качества изображения. Используется преимущественно для фотографий, поскольку для них потеря качества менее критична. Сохраняет параметры цвета в цветовой модели RGB.

JPEG (произносится «джейпег», англ. Joint Photographic Experts Group, по названию организации-разработчика) — один из популярных графических форматов, применяемый для хранения фотоизображений и подобных им изображений. Файлы, содержащие данные JPEG, обычно имеют расширения .jpeg, .jfif, .jpg, .JPG, или .JPE. Однако из них .jpg самое популярное расширение на всех платформах. MIME-типом является image/jpeg.

Алгоритм JPEG является алгоритмом сжатия данных с потерями.

Область применения

Алгоритм JPEG в наибольшей степени пригоден для сжатия фотографий и картин, содержащих реалистичные сцены с плавными переходами яркости и цвета. Наибольшее распространение JPEG получил в цифровой фотографии и для хранения и передачи изображений с использованием сети Интернет.

С другой стороны, JPEG малопригоден для сжатия чертежей, текстовой и знаковой графики, где резкий контраст между соседними пикселами приводит к появлению заметных артефактов. Такие изображения целесообразно сохранять в форматах без потерь, таких как TIFF, GIF, PNG или RAW.

JPEG (как и другие методы искажающего сжатия) не подходит для сжатия изображений при многоступенчатой обработке, так как искажения в изображения будут вноситься каждый раз при сохранении промежуточных результатов обработки.

JPEG не должен использоваться и в тех случаях, когда недопустимы даже минимальные потери, например, при сжатии астрономических или медицинских изображений. В таких случаях может быть рекомендован предусмотренный стандартом JPEG режим сжатия Lossless JPEG (который, к сожалению, не поддерживается большинством популярных кодеков) или стандарт сжатия JPEG-LS.

Сжатие

При сжатии изображение преобразуется из цветового пространства RGB в YCbCr (YUV). Следует отметить, что стандарт JPEG (ISO/IEC 10918-1) никак не регламентирует выбор именно YCbCr, допуская и другие виды преобразования (например, с числом компонентов, отличным от трёх), и сжатие без преобразования (непосредственно в RGB), однако спецификация JFIF (JPEG File Interchange Format, предложенная в 1991 году специалистами компании C-Cube Microsystems, и ставшая в настоящее время стандартом де-факто) предполагает использование преобразования RGB->YCbCr.

После преобразования RGB->YCbCr для каналов изображения Cb и Cr, отвечающих за цвет, может выполняться "прореживание" (subsampling), которое заключается в том, что каждому блоку из 4 пикселов (2х2) яркостного канала Y ставятся в соответствие усреднённые значения Cb и Cr (схема прореживания "4:2:0"). При этом для каждого блока 2х2 вместо 12 значений (4 Y, 4 Cb и 4 Cr) используется всего 6 (4 Y и по одному усреднённому Cb и Cr). Если к качеству восстановленного после сжатия изображения предъявляются повышенные требования, прореживание может выполняться лишь в каком-то одном направлении — по вертикали (схема "4:4:0") или по горизонтали ("4:2:2"), или не выполняться вовсе ("4:4:4").

Стандарт допускает также прореживание с усреднением Cb и Cr не для блока 2х2, а для четырёх расположенных последовательно (по вертикали или по горизонтали) пикселов, то есть для блоков 1х4, 4х1 (схема "4:1:1"), а также 2х4 и 4х2. Допускается также использование различных типов прореживания для Cb и Cr, но на практике такие схемы применяются исключительно редко.

Далее, яркостный компонент Y и отвечающие за цвет компоненты Cb и Cr разбиваются на блоки 8х8 пикселов. Каждый такой блок подвергается дискретному косинусному преобразованию (ДКП). Полученные коэффициенты ДКП квантуются (для Y, Cb и Cr в общем случае используются разные матрицы квантования) и пакуются с использованием кодов Хаффмана. Стандарт JPEG допускает также использование значительно более эффективного арифметического кодирования, однако, из-за патентных ограничений (патент на описанный в стандарте JPEG арифметический QM-кодер принадлежит IBM) на практике оно не используется.

Матрицы, используемые для квантования коэффициентов ДКП, хранятся в заголовочной части JPEG-файла. Обычно они строятся так, что высокочастотные коэффициенты подвергаются более сильному квантованию, чем низкочастотные. Это приводит к огрублению мелких деталей на изображении. Чем выше степень сжатия, тем более сильному квантованию подвергаются все коэффициенты.

При сохранении изображения в JPEG-файле указывается параметр качества, задаваемый в некоторых условных единицах, например, от 1 до 100 или от 1 до 10. Большее число обычно соответствует лучшему качеству (и большему размеру сжатого файла). Однако, даже при использовании наивысшего качества (соответствующего матрице квантования, состоящей из одних только единиц) восстановленное изображение не будет в точности совпадать с исходным, что связано как с конечной точностью выполнения ДКП, так и с необходимостью округления значений Y, Cb, Cr и коэффициентов ДКП до ближайшего целого. Режим сжатия Lossless JPEG, не использующий ДКП, обеспечивает точное совпадение восстановленного и исходного изображений, однако, его малая эффективность (коэффициент сжатия редко превышает 2) и отсутствие поддержки со стороны разработчиков программного обеспечения не способствовали популярности Lossless JPEG.

Разновидности схем сжатия JPEG

Стандарт JPEG предусматривает два основных способа представления кодируемых данных.

Наиболее распространённым, поддерживаемым большинством доступных кодеков, является последовательное (sequential JPEG) представление данных, предполагающее последовательный обход кодируемого изображения поблочно слева направо, сверху вниз. Над каждым кодируемым блоком изображения осуществляются описанные выше операции, а результаты кодирования помещаются в выходной поток в виде единственного «скана», т.е. массива кодированных данных, соответствующего последовательно пройденному («просканированному») изображению. Основной или «базовый» (baseline) режим кодирования допускает только такое представление. Расширенный (extended) режим наряду с последовательным допускает также прогрессивное (progressive JPEG) представление данных.

В случае progressive JPEG сжатые данные записываются в выходной поток в виде набора сканов, каждый из которых описывает изображение полностью с всё большей степенью детализации. Это достигается либо путём записи в каждый скан не полного набора коэффициентов ДКП, а лишь какой-то их части: сначала — низкочастотных, в следующих сканах — высокочастотных (метод «spectral selection» т.е. спектральных выборок), либо путём последовательного, от скана к скану, уточнения коэффициентов ДКП (метод «successive approximation», т.е. последовательных приближений). Такое прогрессивное представление данных оказывается особенно полезным при передаче сжатых изображений с использованием низкоскоростных каналов связи, поскольку позволяет получить представление обо всём изображении уже после передачи незначительной части JPEG-файла.

Обе описанные схемы (и sequential, и progressive JPEG) базируются на ДКП и принципиально не позволяют получить восстановленное изображение абсолютно идентичным исходному. Однако, стандарт допускает также сжатие, не использующее ДКП, а построенное на основе линейного предсказателя (lossless, т.е. «без потерь», JPEG), гарантирующее полное, бит-в-бит, совпадение исходного и восстановленного изображений. При этом коэффициент сжатия для фотографических изображений редко достигает 2, но гарантированное отсутствие искажений в некоторых случаях оказывается востребованным. Заметно большие степени сжатия могут быть получены при использовании не имеющего, несмотря на сходство в названиях, непосредственного отношения к стандарту JPEG ISO/IEC 10918-1 (ITU T.81 Recommendation) метода сжатия JPEG-LS, описываемого стандартом ISO/IEC 14495-1 (ITU T.87 Recommendation).

Синтаксис и структура формата JPEG

Файл JPEG содержит последовательность маркеров, каждый из которых начинается с байта 0xFF, свидетельствующего о начале маркера, и байта — идентификатора. Некоторые маркеры состоят только из этой пары байтов, другие же содержат дополнительные данные, состоящие из двухбайтового поля с длиной информационной части маркера (включая длину этого поля, но за вычетом двух байтов начала маркера т.е. 0xFF и идентификатора) и собственно данных.

Основные маркеры JPEG
Маркер Байты Длина Назначение Комментарии
SOI 0xFFD8 нет Начало изображения
SOF0 0xFFC0 переменный размер Начало фрейма (базовый, ДКП) Показывает что изображение кодировалось в базовом режиме с использованием ДКП и кода Хаффмана. Маркер содержит длину, высоту, количество компонентов, число бит на компонент и соотношение компонентов (например, 4:2:0).
SOF2 0xFFC2 переменный размер Начало фрейма (прогрессивный, ДКП, код Хаффмана) Показывает что изображение кодировалось в прогрессивном режиме с использованием ДКП и кода Хаффмана. Маркер содержит длину, высоту, количество компонентов, число бит на компонент и соотношение компонентов (например, 4:2:0).
DHT 0xFFC4 переменный размер Содержит таблицы Хаффмана Задает одну или более таблиц Хаффмана.
DQT 0xFFDB переменный размер Содержит таблицы квантования Задает одну или более таблиц квантования.
DRI 0xFFDD 4 байта Указывает интервал повторений Задает интервал между маркерами RST n, в макроблоках.
SOS 0xFFDA переменный размер Начало сканирования Начинает сканирование изображение сверху вниз. Если использовался базовый режим кодирования, используется один скан. При использовании прогрессивных режимов используется несколько сканов. Маркер SOS является разделяющим между информативной и закодированной частью изображения.
RSTn 0xFFDn нет Перезапуск Вставляется в каждом r макроблоке, где r — интервал перезапуска DRI маркера. Не используется при отсутствии DRI маркера. n, младшие 3 бита маркера кода, циклы от 0 до 7.
APPn 0xFFEn переменный размер Задается приложением Например, в Exif JPEG файле используется APP1 маркер для хранения метаданных, расположены в структуре, основанной на TIFF.
COM 0xFFFE переменный размер Комментарий Содержит текст комментария.
EOI 0xFFD9 нет Конец закодированной части изображения.

Достоинства и недостатки JPEG

К недостаткам сжатия по стандарту JPEG следует отнести появление на восстановленных изображениях при высоких степенях сжатия характерных артефактов: изображение рассыпается на блоки размером 8x8 пикселов (этот эффект особенно заметен на областях изображения с плавными изменениями яркости), в областях с высокой пространственной частотой (например, на контрастных контурах и границах изображения) возникают артефакты в виде шумовых ореолов. Следует отметить, что стандарт JPEG (ISO/IEC 10918-1, Annex K, п. K.8) предусматривает использование специальных фильтров для подавления блоковых артефактов, но на практике подобные фильтры, несмотря на их высокую эффективность, практически не используются. Однако, несмотря на недостатки, JPEG получил очень широкое распространение из-за достаточно высокой (относительно существовавших во время его появления альтернатив) степени сжатия, поддержке сжатия полноцветных изображений и относительно невысокой вычислительной сложности.

Интересные факты

В 2010 году ученые из проекта PLANETS поместили инструкции по чтению формата JPEG в специальную капсулу, которую поместили в специальный антиядерный бункер в швейцарских Альпах. Сделано это было с целью сохранения для потомков информации о популярных в начале XXI века цифровых форматах.